Stable sets and polynomials
نویسنده
چکیده
Several applications of methods from non-linear algebra to the stable set problem in graphs are surveyed. The most recent work sketched is joint with A. Schrijver and involves non-linear inequalities. These yield a procedure to generate facets of the stable set polytope. If a class of graphs has the property that all facets of the stable set polytope can be generated this way in a bounded number of steps then the stable set problem is polynomially solvable for these graphs. Perfect, t-perfect and h-perfect graphs have this property.
منابع مشابه
Higher rank numerical ranges of rectangular matrix polynomials
In this paper, the notion of rank-k numerical range of rectangular complex matrix polynomials are introduced. Some algebraic and geometrical properties are investigated. Moreover, for ϵ > 0; the notion of Birkhoff-James approximate orthogonality sets for ϵ-higher rank numerical ranges of rectangular matrix polynomials is also introduced and studied. The proposed denitions yield a natural genera...
متن کاملReconstructing Multivariate Trigonometric Polynomials by Sampling along Generated Sets
The approximation of problems in d spatial dimensions by sparse trigonometric polynomials supported on known or unknown frequency index sets I ⊂ Zd is an important task with a variety of applications. The use of a generalization of rank1 lattices as spatial discretizations offers a suitable possibility for sampling such sparse trigonometric polynomials. Given an index set of frequencies, we con...
متن کاملOn the Stability of Independence Polynomials
The independence polynomial of a graph is the generating polynomial for the number of independent sets of each size and its roots are called independence roots. We investigate the stability of such polynomials, that is, conditions under which the independence roots lie in the left half-plane. We use results from complex analysis to determine graph operations that result in a stable or nonstable...
متن کاملApplication of Laguerre Polynomials for Solving Infinite Boundary Integro-Differential Equations
In this study, an efficient method is presented for solving infinite boundary integro-differential equations (IBI-DE) of the second kind with degenerate kernel in terms of Laguerre polynomials. Properties of these polynomials and operational matrix of integration are first presented. These properties are then used to transform the integral equation to a matrix equation which corresponds t...
متن کاملStability of polynomials with conic uncertainty
In this paper, we describe a conic approach to the stability theory of uncertain polynomials. We present necessary and sufficient conditions for a conic set p0 + K of polynomials to be Hurwitz stable (K is a convex cone of polynomials of degree ≤ n and deg p0 = n). As analytical tools we derive an edge theorem and Rantzer type conditions for marginal stability (semi-stability). The results are ...
متن کاملSome Families of Graphs whose Domination Polynomials are Unimodal
Let $G$ be a simple graph of order $n$. The domination polynomial of $G$ is the polynomial $D(G, x)=sum_{i=gamma(G)}^{n} d(G,i) x^{i}$, where $d(G,i)$ is the number of dominating sets of $G$ of size $i$ and $gamma(G)$ is the domination number of $G$. In this paper we present some families of graphs whose domination polynomials are unimodal.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 124 شماره
صفحات -
تاریخ انتشار 1994